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ABSTRACT

Both the United States (US) and Russia have conducted a variety of space environment effects on materials

(SEEM) flight experiments in recent years. A prime US example was the Long Duration Exposure Facility

(LDEF), which spent 5 years and 9 months in low Earth orbit (LEO) f_om April 1984 to January 1990. A key

Russian experiment was the Removable Cassette Container experiment, (RCC-1), flown on the Mir Orbital Station

bom 11 January 1990 to 26 April 1991. This paper evaluates the thermal control coating materials data generated

by these two missions by comparing: environmental exposure conditions, functionality and chemistry of thermal

control coating materials, and pre- and post-fright analysis of absorptance, emittance, and mass loss due to atomic

oxygen erosion. It will be seen that there are noticeable differences in the US and Russian space environment

measurements and models, which compficates comparisons of environments. The results of both flight

experiments confu'm that zinc oxide and zinc oxide orthotitanate white thermal control paints in metasilicate

binders, (Z93, YB71, TP-co-2, TP-co-ll, and TP-co-12), are the most stable upon exposure to the space

environment. It is also seen that Russian flight materials experience broadens to the use of silicone and _rylic

resin binders while the US relies more heavily on polyurethane.

1 INTRODUCTION

This paper presents a comparison of US and Russian LEO flight exposure tests on thermal conu'ol coatings.

The US data was extracted from the LDEF data archive and the Russian data was provided by NPO Energia. The

reader is cautioned when using the solar absorptance values to note that in-space and ground based numbers may

vary because in-space values may show the effects of oxygen bleaching upon exposure to atomic oxygen (AO).

This bleaching may fade during ground tests following re-exposure to oxygen on return to Earth. All

semiconductor pigments like ZnO or TiO 2 exhibit substantial bleaching of the reflectance degradation, (from UV

exposure in high vacuum), after a few months of re-exposure to air. Except for the in-fright data from LDEF

experiment S0069. the results are from specimens exposed to air for several months and bleaching has occurred.

2 SPACE ENVIRONMENT EFFECTS ON MATERIALS - FLIGHT

2.1 The US Long Duration Exposure Facility 0LDEF)

NASA's Long Duration Exposure Facility (LDEF) was a free-flying, 12-sided cylindrical spacecraft,

measuring 30 feet, (9.14 m), in length and 14 feet, (4.27 m), in diameter, that was designed to expose a variety

technology experiments to a known LEO environment 1. The LDEF was three axis stabilized, to ensure highly

reliable predictions of environmental exposure conditions, and carried 57 separate experiments in areas such as:

materials, coatings, thermal systems, powm', propulsion, space science, el_cs, and optics. The location of a

specific experiment is described by referencing a row (I - 12) and a column (A - F) as shown in Figure 1. Because

the LDEF was three axis stabilized, the location of an experiment on the vehicle played a significant role in



determining its environmental exposure conditions, (atomic oxygen fluence, solar exposure, radiation .... ). Most of

the experiments were passive with the majority of the data resulting from post flight analysis.

The LDEF was placed in LEO by the Space Shuttle Challenger in April of 1984, with the retention of

remaining in orbit for one full year until capture and retrieval on a later mission. Before the retrieval could occur

the Shuttle fleet was grounded as the result of the Challenger accident and it was 5 years and 9 months before the

spacecraft was returned in January of 1990 by the Shutde Colmnbia. Post-flight analysis of the LDEF generated a

wealth of data on the interaction of materials and systems with the LEO environment. These data have been

presented at three dedicated post-retrieval symposiums and integrated into the Materials and Processes Technical

Information Service (MAPTIS) database2"6.

SPACE
END

VELOCITY
VECTOR _

X-AXIS

Y-AXIS

Figure 1. The Long Duration Exposure Facility 0LDEF).

Because the LDEF provides the largest and most complete United States (US) space environment effects on

materials database, LDEF data will serve as the U.S. benchmark for comparison to similar Russian results.

2.2 The Russian Removable Cassette Contalna- 0RCC) Experiments

In parallel with the US efforts a number of space environment effects on materials (SEEM) experiments have

been conducted by the Russians aboard the Salyut and Mir Orbital Stations (OS). Eight experiments containing

about 300 samples of various types of materials and thermal control coatings CI'CCs) have been tested in the last

ten years, as shown in Table 1. The material samples were exposed to the space environment via removable

cassettes which were carried aloft interior to the spacecraft during re-supply missions, placed on the exterior of the

station by cosmonauts, retrieved at a later date, and returned to Earth for analysis. Two types of cassettes, the FM-



110 and the removable cassettes container (RCC), have been utilized. The physical differences in the earlier FlVl-

110 and current RCC cassettes are liswA in Table 2. A picture of an RCC is provided m Figure 2.

The Russian materials data presented in the remainder of this paper were obtained by the RCC-I experiment

which was delivered to the Mir station on 24 August 1989, exposed to the space environment for 470 days between

11 January 1990 and 26 April 1991, and returned to the ground on 20 May 1991. The RCC-I was installed on the

transfer compartment body of the Mir station, as depicted in Figure 3. The normal to the material samples was

perpendicular to the Mir station surface. During the fright the Mir was in LEO with an apogee in the range 380 -

430 km, perigee in the range 360 - 390 kin, (for an average altitude of 385 km), and an inclination of 51.6 degrees

as shown in Figure 4.

Table 1. Russian space environment effects on mterlals flight experiments.

Station Cassette Installation Removal

Date Date

Salyut 6

Salyut 7
Salyut 7

Salyut 7
Mix

Mir
Mir

MIX

FM-I10 No. 11

FM-110 No. 16

FM-110 No. 15

FM-110 No. 17

FM-II0 No. 19

FM-110 No. 21

RCC-1
RCC-2

29 September 77

19 April 82
03 November 83

25 July 84
16 June 87

26 February 88

11 January 90

25 January 90

29 July 78

30 July 82
25 July 84

28 May 86

26 February 88

11 January 90

26 April 91

21 February 92

Table 2. Russian space environment effects on materials container specifications.

Cas_tie

- closed

- open
Rack

- length
- diameter

- ball end diam.

Sample
- dimension

- number

- mass

FM-IIO RCC

135 x 90x 15

215 x 90 x I0

18

0.30 kg

210 x 255 x 40

400 x 255 x 20

400

15

36

30 x 30 x 2

70

2.0 kg
Dimensions are in mm

Exposure

(days)
312

99

27O

672

255

685

470

756

3 ORBITAL EXPOSURE CONDITIONS

3.1 Solar Activity and Solar UV Exposure

A standard measure of solar activity is the solar output at 10.7 can wavelength, commonly known as the FI0.7

value. As shown in Figure 5 the LDEF was launched just before solar minimum and remained in orbit until just

before solar maximum. Conversely, the RCC-I experiment took place during solar maximum. Note that while
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bothUS and Russian observations confirm this fact, there is significant disagreement as to the actual FI0.7 value.

The maximum US value recorded is approximately 200 and the cm_e exhibits a dual peak, in mid 1989 and late

1992, separated by a local minimum in mid 1990. Two separate Russian values were quoted by NPO Energia, with

a maximum value of approximately 280. No further details on the nature of these predictions is available, but

neither source indicates the dual peaks noted by the US. The first source records the maximum FI0.7 value in

early 1991, while the second source records the maximum value in mid 1990. As will be discussed in the next

section, the FI0.7 value is directly related to neutral atmospheric density. Consequently, the FI0.7 disagreement

will propagate into a disagreement in neutral density.

Solar

i.
2 X Z

L_ RCC-1

Figure 3. The Mir Orbital Station (OS).

Altitude

m Apogee

450 _ Perigee

400

350

300 I 4 _ I !

1990.00 1990.25 1990.50 1990.75 1991.00 1991.25

Yeclr

I

1991.50

Figure 4. MIr OS altitude during the RCC-1 experimenL
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Figure 5. Solar F10.7 vs. time.

The LDEF sun exposure is indicated in Table 3. Because of the duration of the experiment. 5 years and 9

months, the sun exposure for all LDEF surf_,s are in the thousands of hours. Conversely, the RCC-1 solar

exposure is estimated at no more than 20 - 25 equivalent solar days, 480 - 600 hours, at least one full order of

magnitude less than the LDEF. The sun exposure is a significant measure of a materials stability in that photons

having energy in the range 5 - 10 eV, the solar UV, are capable of severing molecular bonds and altering materials

properties.

Table 3. LDEF environmental exposure conditions.

Row

1
2
3
4
5
6
7
8
9

10
11
12

Earth'
Spacei

Angle off ram
(de_rees)

111.9
141.9
171.9
158.1
128.1
98.1
68.1
38.1
8.1

21.9
51.9
81.9
90.8
89.2

Sun Exposure
(hours)
7,400
9,600 1.54
ll,100 1.32
10,500 2.31
8,200 9.60
_400 4.94
7,100 3.39
9,400 7.15
! 1,200 8.99
10,700
8,50O
6,800
4,5OO
14,500

AO Fluence

(atomscm"2)
2.92x I017

x 1017
x I017
x 10o5

x I012

x 1019
x 102l

x I021

x 102l

8.43x 102_

5.61x 1021

1.33 x 102l
3.33 x 102o
4.59 x 102o



3.2 Neutral Density and Atomic Oxygen Fluence

It is well established that variations in solar activity induce changes in the local atmospheric density at

spacecraft orbital altitudes. Variations in atomic oxygen (AO) density as a function of F10.7, as predicted by the

US Mass Spectrometer Incoherent Scatter (MSIS) model, are illustrated in Figure 6. 5 Knowledge of F10.7

variations during the LDEF mission provide detailed knowledge of atmospheric density which, when coupled with

knowledge of the LDEF attitude, yield AO fluence according to the relation

T

_^0 (c'm-2 ) = j* k. n AoVodt
o

where vo (cm/s) is the orbital velocity of the spacecraft, nAO (Cm-3) is the number density of atomic oxygen, and k,

is an angle factor taking into account the orientation of the sample plane relative to the velocity vector, and T is the

exposure duration. Performing these estimates for the LDEF yield the results indicated in Table 3.

1ooo

9O0

8O0

700

60O

5OO

4O0

3OO

200

1130

o

10_

<- :.,,,:

t I I I I I I ! I I

102 102 104 10s 10e 107 10e 10° 10'0 10 '1

Number Density (rn_)

F10.7= 250

- - F10.7= 225

- -- F10.7= 150

.... t:10.7= 100

F10.7= 75

Figure 6. Atomic oxygen density as predicted by the U.S. MSIS atmospheric model.

For RCC-1, the coefficient ka was calculated based on knowledge of the Mir OS animde control modes and

nAO was based on a Russian atmospheric model. The primary animde control mode during the course of the

experiment is referred to as ICS-2. In this orientation, the y-axis of the station is normal to the orbital plane and

the x-axis is parallel to the solar vector projection to the orbital plane. This mode was maintained about 50% of

the flight time. A second attitude control mode used during the experiment is referred to as ICS-1. In this

orientation, the x-axis of the station is parallel to the orbital plane and the y-axis is parallel to the solar vector

projection. This mode was maintained about 25% of the flight time. A combination of the ICS-I and ICS-2 modes



wasusedapproximately20%ofthetimewithplannedattitudecontrol modes making up the remaining 5%. As is

seen in Figure 3, the cassette was shielded by the attached module. Similarly, when the Soyuz TM and Progress

transport vehicles were docked with the Mix, the RCC-I was subject to their additional shielding effects. The

calculations made by the analysis team showed that the total time of RCC-1 exposure to AO was 188 days and the

mean value of cos tx, was 0.051. The integrated fluence of AO to the RCC-I was estimated at 5.36 x 1022 cm-2 as

shown in Table 4. Consequently, the RCC-1 exposure exceeds the exposure of any LDEF surfaces by at least a

factor of five.

Table 4. Solar activity and atomic oxygen flux during the RCC-1 experiment.

Exposure Time

0

1,000

2,000

3,000
4,000

5,000

6,000

%000

8,000
9,000

10,000

11,000

11,280

Solar Activity

0:10.7)
279

284

285
286

281

275

269

264

259

255
250

246

245

AO Flux

 cm-2s-l)
1.50 x 1015
1.6 x 1015

1.65 x 1015

1.7 x 1015

1.6 x 10 t5

1.5 x 10 t5

1.4x I015

1.3 x 1015
1.2 x l015

1.15 x l015

1.0 x 10 t5

0.8 x 1015
0.75 x 1015

Average 267.5 1.32 x 1015

Integratexl Fluence = 5.36 x 1022 cm -2

The relation between atmospheric density and FI0.7, as predicted by the Russian model, is illustrated in

Figure 7. The disagreement between the neutral density as predicted by the MSIS and Russian models is

highlighted in Figure 8. Recall that the Russian prediction of FI0.7 for the time of the RCC-1 experiment was

267.5, while the US results indicate a value closer to 200. Utilizing the Russian atmospheric model and lowering

the F10.7 value from 267.5 to 200 would reduce the equivalent AO fluence to RCC-I by about 10%. Using the AO

density values predicted by the MSIS model at FI0.7 = 200 would reduce the AO fluence by a f_tor of 5. This

would bring the RCC-I fluence into general agreement with the exposure seen by rows 9 and I0 on LDEF.

3.3 Radiation Environment and Absorbed Dose

During the course of the LEO experiments the sample materials were subjected to radiation from the trapI_

radiation belts, solar protons, and galactic cosmic rays. Because of their low altitude, both the LDEF and the RCC-

1 were below most of the wapped radiation belts save for the region referred to as the South Atlantic Anomaly.

This phenomena provided most of the ionizing radiation that the LDEF and RCC-I were exposed to as the Earth's

magnetic field effectively screened the majority of the solar protons and galactic cosmic rays.

8



The flux of electrons and protons to both spa_t was calculated based on two separate isou'opic flux

distribution models. The radiation belt fluences for both the LDEF and RCC-1 missions are illustrated in Figure 9.

Note that even though the RCC-I mission was significantly shorter than that of the LDEF its fluence is greater

because of its higher orbital mclmation. These fluence values are listed in Table 5.

Altitude

(km)

1000

900

800

700

600

500

4OO

3OO

2O0

100

0

101

.N N.

".. \.

". \ .

_- ._.

t t ! I I I I t ! !

10 2 10 3 104 10 5 10 s 10 7 10 s 10 _ 1010 1011

Number Density (m -s)

FI0.7= 250

- - FI0.7= 230

-- - -- FI0.7= 150

.... FI0.7= 100

FI0.7= 70

Figure 7. Atomic oxygen density as predicted by the Russian atmospheric model.
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1000

9OO

8O0

700
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5OO

400
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i i i i i

102 103 104 10 s 106 107 10 a 10 g 101° 10 'I

Number Density (m _)

Figure 8. Comparison of US and Russian atmospheric density for F10.7 = 100.
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10.3 10-2 10-1 100 101 102 103
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Figure 9. Proton and electron belt fluence predictions for the LDEF and RCC-1 experiments.

Table 5. Russian proton and electron belt fluence predictions for the RCC-1 experiment

Proton Flux Electron Flux

Energy

(MeV)
0.008

0.010

0.020

0.040
0.080

0.100

0.300

0.500
0.700

1.000
3.000

5.00

7.00

10.0

30.0
40.0

50.0

70.0

100.0
200.0

FJueoo_

(X 10 9 Cm "2)

31.7

31.4
29.9

28.4

24.7

23.7

5.36
2.99

2.06

IA2
0.563

0AI3

0.350

0.304
0.225

0.205

0.186

0.151
0.108

0.031

Energy

(MeV)
0.002
0.004

0.008

0.010

0.020

0.030
0.040

0.100
0.2OO

0.300

0.400
0.5OO

0.600

0.700

0.800

0.900

1.00
2.00

3.00
4.00

_UCDC_

(:X 10 9 cnl "2)

2140

1860

1540
1450

983

843

757

671
570

240
132

87.3

64.2

50.3

40.8

33.8
28.5

5.61

0.682
0.O24

The LDEF radiation dose values have been well studied and ate on the order of 3 x 104 fads as illustrated in

Figure 10. The placement of the RCC-I cassette provided partial shielding of the TCC samples to the direct effect

10



of theVanAllen belt ('VAB) particle fluxes. Performing a Monte-Carlo simulation indicated that 26% of the

overall VAB flux fell on the working side of the RCC-I samples, with the remaining 74% of the flux impinging

the opposite side of the spacecraft. The radiation dose absorbed by the RCC-1 samples is estimated at 8x105 rack

as shown in Table 6.

10 s

Mission Dose

(Rad - T=ssue)
102

10'

10o

_ Total

.... Becfron

Proton

10"1 10o 101

Shielding Thickness (g/crrr 2)

, , , . ,.i
|

102

Figure 10. The LDEF mission radiation dose profile.

Table 6. Radiation dose values for the RCC-1 experiment.

Source Dose (rad)
Trapped Protons 2.7 x 105

Trapped Elecu_ns 5.3 x 105

Total 8.0x 105

3.4 Comparison of LDEF and RCCol Environment

The LDEF and RCC-I orbital exposure conditions are compared in Table 7. As shown, the RCC-1 AO

fluence is approximately equal to that seen by rows 9 - 10 of LDEF when determined using US models. "l'ne RCC-

l UV exposure is only about 1/20th of rows 9 and 10 of LDEF and the RCC-I radiation dose is a factor of 25

higher. As a result, the RCC-I experiment would not be expected to wimess UV degradation in materials if the

time scale associated with the degradation process were longer than ~ 500 hours. Conversely, the RCC-I materials

would be more susceptible to radiation damage. However, since these levels of radiation are not close to the usable

limits for most materials, the main difference will be the UV exposure value.

11



Table7. ComparisonoftheLDEFandRCC-1environmentalexposureconditions.

LDEF RCC-I
Rltmlam US

Row9 Row10 MedalsModels
UVExposure11,200 10,700 ~ 600 -

fnrs)
AO Huence 8.99 8.43 53.6 ~ 10

(x 102' an "2)
Dose 30 30 800 -

(krad)

4 FLIGHT TEST RESULTS

4.1 Summary of RCC-1 Thermal Control Coatings Exposure

The Russian RCC-1 TCC experiment contained 14 separate materials as listed in Table 8. As indicated, only

two US materials, Z93 and YB71, bear chemical similarity to their Russian counterparts despite full functional

similarity. Test were conducted on the RCC-1 materials to measure their optical, mass loss, and chemical

properties. A visual inspection of the TCC samples was conducted to assess the external appearance of the

samples. Solar absorptance and emissivity were measured under laboratory conditions by an applied photometer,

(FM-59), and a themoradiometer, (TEPM-I), while sample mass changes were determined from pre and post-flight

mass determinations using an analytical balance having an acr,.ur_y of 0.1 mg. F'mally, a chemical composition

analysis of the RCC- 1 material surfaces was performed with the use of an x-ray dispersionless microanalyzer with

a semiconductor radiation receiver built in the electronic microscope.

4.1.1 Visual Inspection

Visual inspection of the TCC samples showed some significant changes in the external appearance of many of

the samples as illuswated in Table 9. The AK-512-w, KO-5258, and 40-1-12-88 reflectors changed from white to

various shades of yellow. The unprotected absorber AK-243 changed from black-mat to grayish-blue. This is

probably due to AO erosion of the acrylic resin binder. The grayish-blue could be easily robbed out but surface mat

color loss was observed. The FP-5246 coating changed born black to grayish-white. The protected absorbers

showed no change in color or stale. The AK-512-g changed born dark green to emerald green with more mat

surface. All other materials showed no visible change.

4.1.2 Surface Morphology

Magnified images of four of the coatings were obtained with the use of an electron microscope, F3gures 11 -

13. Investigation of the smface structure indicated that the ceramic and paint coatings vary in surface relief.

Before the flight the enamels had a rather flat surface with a small number of pores. After exposure to space, the

paint coating surface appemed rougher and the number of pores increased. Before fright, the ceramic coatings

already had a large number of cracks on their surfaces. After flight both the number and dimension of cracks were
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observedto have increased, probably due to thermal cycling. The surface relief of the coating TP-co-10M, which

showed no evidence of a contaminant layer, did not vary. The egress of pigment particles on the surface of

coatings TP-co-90 and 40-1-12-88 is easily seen. In this case the degree of the surface filling with such particles is

insignificant. This fact correlates with the results of chemical analysis of these TCC which shows a decrease in

surface pigment and an in_ in surface binder.

Table 9. Visual Inspection of the RCC-I thermal control coating mterlals.

Class

Reflectors

Reference

AK-512-w

KO-5191

KO-5258

TP-co-2

TP-co-10M

TP-co-lI

TP-co-12

TP-co-90

40-I-12-88

Absorbers AK-243"
FP-5246"

Other AK-512-g

AMr 6 (w)

ASr 6 (b)

Final Appearance

gray-yellow

no change

gray-yellow

no change
no change

no change

no change

no change

bright yellow

grayish-blue

grayish-white
initial: dark green

final: emerald green

no change

no change

"samples protected by quartz glass did not exhibit a

change in surface color

4.1.3 Optical Properties

Laboratory measurements of solar absorptance, emittance, and mass loss for the TCCs are given in Table 10.

A number of TCC materials did not experience a_y significant changes in solar absorplance or emittance and

showed no significant mass changes. This proves the stability of these coatings under exposure to the space

environment The TP-co-2, TP-co-ll, and TP-co-12 coatings are the most stable, while KO-5191 exhibited the

highest increase in solar absorptance, (0.02), due to the degrading effect of the solar UV.

White paint 40-1-12-88 turned out to be the least stable material studied. Tl_s material is based on ZtO 2 and

is known to be very sensitive to UV radiation. Because this material exhibited no practical mass change it can be

concluded that it is relatively immune to AO attack, thereby preventing any cleaning erosion effect. Conversely,

the coatings TP-co-10M and TP-co-90 showed a mass decrease, but no change in optical properties. This is

consistent with the optical stability of these materials was maintained by AO erosion on the exterior surface. No

significant changes in emittanee were observed for any of the materials.

14
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4.1.3.1UV/Visible Reflectance Properties

Measurements of the diffuse reflection spectra, (p_), in the range 350 - 850 nm are given for each of the TCCs

in Figures 14 - 27.

AK-512-w, (Figure 14), and KO-5191, (l_gure 15), did not experience changes save in the ultraviolet region,

370 - 450 nm. AK-512-w displayed a maximum 8% increase and KO-5191 displayed a maximum 4% decrease.

The abnormal behavior of the AK-512-w coating could be caused by:. i) an increase in the fraction of pigment on

the coating surface, ii) a change in the sample surface relief, or iii) a change of the electrical state of the pigment.

The KO-5258 coating, (Figure 16), which included the zinc oxide and titanium dioxide mixture, turned out to

be the least resistant to space exposure. This indicates that the simultaneous inclusion of both ZnO and TiO 2

pigments is less effective than the use of either of them singly.

The silicate coatings TP-co-2, 0_gure 17), TP-co-ll, (Figure 19), TP-co-12, (Figure 20), and TP-co-90,

(Figure 21), exhibited a slight change, (- 2%), in reflection for wavelengths less than 400 nm. This is also true for

the asbestos coating TP-co-1GM, (Figure 18). Changes in the visible and shortwave infrared spectra were not

d_xpected, the 40-1-12-88 coating, (Figure 22), experienced the greatest change in p_. The sample color

had changed from white to yellow-brown during the mission. The differential reflection spectrum extends over the

spectral interval 270 to 700 rim, exceeding 50% at 400 rim. The instability is attributed to the use of an unstable

polymer as a binding agent in this enamel.

The unprotected samples of AK-243 and FP-5246, (Figures 23 and 24), were noticeably discolored and their

PT.values increased. The color and Px of the protected samples remained virtually unchanged, (Figures 25 and 26).

The AK-512-g coating, (Figure 27), showed the largest degree of discoloration and p_. increase.

4.1.3.2 IR Reflectance Properties

Measurements of PT,in the range 1000 - 2500 nm are provided in Figures 28 - 38. All reflectors showed a

slight decrease in p_. except for TP-co-I 1, (Figure 33), and TP-co-12, (Figure 34), samples which showed a minor

increase. The TP-co-10M coating showed the largest change, exhibiting a 3% decrease at approximately 1850 nm.

The reflection spectra for the absorption coatings FP-5246, (Figure 37), and AK-243 (l_gure 36) both

increased after exposure. The AK-512-g, (figure 38), spectra increased almost uniformly by approximately 10%.

The increase was greater for the unprotected samples than for the protected ones, with the AK-243 post-flight

increase being the greatesL The AK-243 increase occurred mainly at the shorter wavelengths while the FP-5246

changes were at the longer wavelengths. This may indicate a change in the coating binder.

4.1.4 Mass Loss

Mass loss was observed on the majority of the samples due to erosion by AO, see Table 10. The greatest mass

loss was observed on the black paint FP.5246 and is related to the carbon content in the coating pigment binder

which is susceptible to AO. KO-5191 and TP-co-ll demonstrated no mass changes, while the porous ceramic

coating TP-co-12 demonstrated a significant increase of 1.1 rag. It is believed that this increase is due to
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coating TP-co-12 demonstrated a significant increase of 1.1 mg. It is believed that this increase is due to

contamination from the Mir OS condensing on the materials surface when cooled by the Earth's shadow. For

coatings which exhibited a mass increase, the contamination deposition effect obviously prevailed over the AO

erosion effect.

4.1.5 Chemical Composition Analysis

The chemical composition analysis data confirms an increase in contamination and a reduction in surface

pigment base for all types of materials, Table ll. The white and green AK-512 paints which exhibited a silicon

decrease were the only exception. Of particular interest is a comparison of the study results for the black enamels

FP-5246 and AK-243. The unprotected FP-5246 sample showed a two-fold increase in silicon content and almost

the same decrease in chlorine content. The unprotected AK-243 sample exhibited a decrease of silicon content and

a significant increase in molybdenum, which was not present in the coating before the flight. The chemical

composition of the protected surfaces varied only moderately, but did exhibit a decrease of silicon content. No

changes in the chemical composition of the anodized aluminum coatings were detected.

Conclusions

The reflective TP-co-2, TP-co-10M, TP-co-I 1, and TP-co-12 ZnO and Zn2TiO 4 based coatings were the

most resistant to space exposure. No changes in the visible or thermo-optical prope_es, detectable mass

loss, or chemical composition were observed.

The reflective paint coatings 40-1-12-88 and KO-5258 were the least resistance to space exposure. A minor

increase in solar absorptance and a decrease of reflection spectra were noticed. The KO-5258 coating

showed a more detectable increase in silicon content.

All absorber coatings were degraded by space environment exposure. These coatings revealed a significant

decrease in solar absorptance, an increase in spectral reflection, and significant erosion due to AO. The AK-

243 and FP-5246 coatings that were protected by quartz glass did not experience noticeable changes m their

characteristics.

Surface morphology changes were detectable depending on the nature of the TCC. An increase in the

number of pores and miaxx:mcks were detected, but the sizes of the pigment particles in the coatings showed

little variation.

4.2 Summary of LDEF Thermal Control Coatings Exposure

The LDEF Materials Special Investigation Group conducted investigations of a variety of materials on the

LDEF, including: aluminum structures, polymers, composites, films, silvered FEP Teflon, and a variety of thermal

control coatings. 6-13 Because the Russian RCC-1 experiment was concerned exclusively with TCC, only the LDEF

TCC results will be summarized here. A partial fist of LDEF TCC materials is provided in Table 12. Because the

LDEF contained numerous samples of each material, each of which may have been subjected to a different orbital
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environment, it is more appropriate to examine the conclusions for each material separately, before comparing

directly with the Russian results. The absorptance and emittance properties of the LDEF TCC, which we_

measured m accordance with ASTM E424 and ASTM E 405, are listed in Tables 13 - 14 and 15 - 16, respectively.

4.2.1 White Tedlar

White Tedlar was expected to show the degrading effects of the Solar UV over the course of the LDEF

mission. Instead, the optical properties of this material actually showed slight improvemenL The surface

remained diffuse and white, apparently as the result of AO erosion breaking loose the degraded surface layers,

leaving a clean surface behind.

4.2.2 A276 White Paint

Chemglaze A276 is a white thermal control paint made with titanium dioxide pigment m a polyurethane

binder that has been used on many short term space missions. It was known to degrade moderately under long

term UV exposure and to be susceptible to AO erosion. White on black disks of the A276 paint, with and without

protective coatings of 01650 and RTV670, were applied to over two hundred tray clamps on the LDEF.

Approximately 100 A276 disks were measured for absorplance and emittance making A276 one of the most

extensively studied materials on the LDEF.

Protected or trailing edge facing A276 samples underwent a darkening, changing from a white color to tan

and eventually dark brown after six years LEO exposure. This is due to a UV degradation of the polyurethane

resin portion of the coating that leads to a non-recoverable darkening. The unprotected samples remained very

white. Apparently, as the exposed A276 surfaces degraded they were also eroded by AO, leaving a fre_,

undamaged surface, Figure 39. The AO eroded the polyurethane portion of the paint, leaving behind paint

pigment particles. The total erosion depth was measured and found to be on the order of 10 microns. Pre-flight, in

space, and post-flight measurements of solar absorptance indicate that both protective coatings prevented AO

erosion but allowed the solar UV to degrade the A276. Unprotected A276 samples show only small amounts of

degradation. The overcoated samples indicated cracking and peeling post-flight, while the unprotected samples

remained smooth.

,1.2.3 Z93 White Paint

Z93 is a white thermal control paint made with zinc oxide pigment in a potassium silicate binder. Most Z93

samples were almost impervious to the 69 months of LEO exposure making it a leading candidate for Space

Station applications. The Z93 samples showed an initial improvement in solar absorptance due to an increased

reflectance above 1300 nm, Figure 40. This is offset by a very slow degradation below 1000 nm which results in

an overall degradation of 0.01 in solar absorptance.
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Table 12. A partial list of thermal control coating materials on the LDEF.

Class
Reflector

Absorber

Other

Material

Reference
White Tedlar

A276
Z93

S13GLO
YB71

Silver Teflon
DIll
7.3O2
Z306

Chromic
Acid

Anodized AI

Chemical Nature

TiO_ Ipolyurethane
ZnO / siticone

Zn_TiO4 / silicone
ZnO / K silicate

carbon / polyurethane
TiO_ + C /

polyurethane

Table 14. Solar absorptance values for LDEF
thermal control coatings, thermal control surfaces
experiment.

Table 16. Emlttance values for LDEF thermal

control coatings thermal control surfaces
experiment.

Materials

Tedlar
A276

w/RTV670
w/O1650

Z93
S13GLO
YB71
Silver Teflon

Dlll
7_3O2

w/RTV670
w/OI650

Cr Anodize

Solar Absorptance
Pie-

Flight

0.25
0.27
0.25
0.14
0.18
0.13
0.06
0.98
0.97
0.98
0.98

0.40

Post-

Flight AtX

0.24 -0.01
0.62 0.35
0.59 0.34
0.15 0.01
0.37 0.19
0.15 0.02
0.08 0.02
0.99 0.01
0.98 0.01
0.99 0.01
0.99 0.01
0.47 0.07

Potation - Row 9, Angle o_ Ram - g.l °,
AO Fiuence- 8.99 x 1021 atoms cm "2. Sun Hma's- 11.200

Materials

Tedlar
A276

w/RTV670
wlO1650

Z93
S13GLO
YB71
Silver Teflon

Dill
7.302

w/RTV670
w/OI650

Cr Anodize

Emittance

Pre-

Flight

0.90
0.91
0.90
0.91
0.90
0.90
0.81

0.93
0.91
0.91
0.90
0.84

P_t"

Flight

0.93
0.88
0.89
0.92
0.89
0.89
0.78
0.90
0.92
0.90
0.90
0.78

ACt

0.03
-0.03
-0.01
0.01
-0.01
-0.01
-0.03

-0.03
0.01
-0.01
0.00

-0.03
Potation - Row 9. Angle off Ram- g.l °.

AO Flueece - 8.99 x 102 1 atoms am "2. Sun Hotws - 11.200

4.2.4 S13GLO White Paint

S13G and its low outgassing version, SI3GLO, are white thermal contsol paints made with zinc oxide pigment

in a RTV602 silicone binder. The S13G and SI3GLO samples were predictedto degrade moderately in the Solar

UV environment. Historically, this instability has been attributed to the formation of an easily bleachable (by

oxygen) infrared absorption band between ~ 700 and 2800 rim. "l=aisdegradation is often not observed by post-

flight reflectance measurements performed in air because exposure to the atmosphere can result in rapid and

complete recovery of the UV-indaced damage. To prevent the bleaching the zinc oxide pigment particles are

encapsulated in potassium silicate to provide greaterUV stability. There is, howev_, additional degradation of the
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silicone binder that only partially re_vers upon exposure to the atmosphere. Both leading and trailing edge

samples of S13GLO were observed to degrade significantly during the LDEF mission, Table 17. Unlike the A276

however, there is little difference in the surface morphologies between leading and trailing edge samples. Note

that these tests were conducted on the early 1980's version of S13GLO. RTV602 has since been discontinued and

the silicone used in the currently produced material has a slightly different formulation. More recent test results

may vary from these flight data.

Table 17. Post-flight analysis of LDEF thermal control coating samples.

Sample Row

S 13(3 Control

L3

13

L6

T6

Silver Control
Teflon 1.3

T3

L6

1"6

DI 11 Control

L3

13

Io6

T6

as, Comment
02213

02266 discolored, rough

0A75 discolored, rough

02233 discolored, rough

02238 discolored, rough
0.109

0.126 bright, hazy, piued

0.177 bright, hazy, scuffed
0.135 bright, hazy, tarnish

0.975

0.979 nonreflective, pitted
0.982 nonteflective,

0.981 chipped

- pardculates
.

4.2.5 YB71 White Paint

YB71 is a white thermal control paint made from zinc orthotitanate. The YB71 coatings behaved similarly to

the Z93 samples. A small increase in infrared reflectance early in the mission caused a dectr.a_ in solar

absorptance, Figure 41. This was followed by a slow, long term degradation resulting in a small overall increase in

solar absorptance. Samples with YB71 applied over a primer coat of Z93 had a somewhat lower absorptance than

did other YB71 samples.

4.2.6 Silver Teflon

There were a variety of silver Teflon materials flown on the LDEF. The Thermal Control Surfaces

Experiment CI'CSE) flew one 2 mil thick silver FEP Teflon sample, and two 5 mil thick, (specular and diffuse),

samples. The exterior surfaces underwent significant appearance changes where the surface color was changed to

a diffuse, whitish appearance due to AO erosion. Although the visual appearance was noticeably changed, the

solar absorptance of the 5 mil samples did not degrade significantly and there was little change in emittance. The

2 mil sample had developed a brown discoloration, under the Teflon surface, and more than doubled the solar
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absorptance. Post-flight analysis indicated that the brown discoloration was auributed to the application of an

adhesivewhich crackedthesilverlayerand allowedthe adhesivem through the cracksand be degraded by the

SolarLrV. However, onlya smallchange insolarabsorptancewas measured overthef_rst16 months ofexposure,

An indicationthatthedegradationoccurredslowlyover longspaceexposure.

4.2.7 Chromic Acid Anodized Aluminum

One sample of chromic acid anodized aluminum indicated significant degradation during the first 18 months

of the mission. When the TCSE batteries were depleted at 19.5 months one sample was left exposed to the

environment and the other was protected. These two samples had noticeably different appearance. The sample

exposed for 19.5 months had an evenly colored appearance, except for several small surface imperfections. The

sample exposed for 69.2 months was mottled and washed out in appearance. Both samples were significantly

contaminated with a silica/silicate contaminant. Specimens in an adjacent tray that were anodized in the same

batch as thc TCSE specimens indicated only a 0.02 change in solar absorptance.

4.2.8 Dlll Black

The D111 diffuse black ceramic samples performed very weU, with little change m either visual apace or

optical properties during the LDEF mission. D111 is a non-specular coating made of a carbonaceous pigment in a

glass binder. Apparently, the glass binder adequately protects the pigment from AO attack. The flight results are

presented m Table 17.

4.2.9 Z302 Black Paint

Z302 is a glossy black thermal control paint made from carbon black pigments in a polyurethane binder. 7_,302

is known to be susceptible to AO attack and several samples were flown with protective overcoats of either OI650

or RTV670. Two unprotected samples, which were exposed for the entire mission, eroded down to the primer coat.

Two other samples, which were exposed for only 19.5 months, eroded but still had good reflectance properties. As

with the A276 overcoats, the ovetr, mt_ Z302 was observed to contain cracks and peels during post-flight analysis

but showed little change in solar absorptance.

4.2.10 Z306 Black Paint

Chemglaze 7_,306 is a flat black thermal control paint made from titanium dioxide and carbon in a

polyurethane binder. 7_306 was the primary thermal control coating on all LDEF interior structural members and

experiment tray bottoms. The Z306 on the interior surfaces, which were not subjected to AO or UV, showed good

durability. On exterior surfaces and the leading edge way clamps the 7,306 was almost completely eroded away

from the composite substrate to which it was applied. The red coloration characteristic of the primer pigment was

visible and significant erosion into the composite substrate was observed. Based on the coating thickness, the

erosion rate of Z306 is estimated to be at least 5 x 10 -25 cm3/O atom.
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4.2.11 Conclusions

Continuous monitoring of solar absorptance for the LDEF materials was not possible because: i) most

experiments were passive, returning no data in flight, and ii) the LDEF batteries expired after about 1.5 years,

leaving the majority of the mission without a means to capture data on the spac.eorafL Because the LDEF saw most

of its AO fluence late in the mission recovery effects due to AO may have altered some of the degrading effects of

the Solar UV. Nevertheless, some significant conclusions can be made about the LDEF findings.

• White thermal control paints Z93 and YB71 are stable, while A276 is degraded by both AO and UV radiation.

Potassium silicate binders are stable, while organic binders are not

• D111 black thermal control paint is stable.

• Chromic acid anodized aluminum is stable.

• UV accelerates AO erosion of Teflon and FEP erodes more rapidly than predicted. The silver Teflon blankets

were eroded by AO, but remained functional. On LDEF only 0.001 inches was eroded from the original 0.05

inch film. For longer lifetimes or higher AO fluences the functionality of silver Teflon blankets may be a

concern.

• Surface crazing was found in clear silicone coatings, reducing their usefulness as AO protective overcoats.

5 SUMMARY

Several significant comparisons can be made as the result of this study. They are grouped into the areas of

space environment models, materials chemistry, and materials exposure results.

There appear to be significant differences in the US and Russian space environment measurements and

models. Specifically, the Russian measurements of FI0.7 exceed the US values by 25% during solar maximum

despite showing good agreement during solar minimum. Similarly, the neutral atmospheric density predicted by

Russian models exceeds the corresponding US value by a factor of 3 - 10, with the greater difference occurring at

higher altitudes, (1000 km). Finally, the Russian radiation models appear to predict a slightly greater radiation

environment in comparison to US models. Consequendy, for the same spacecraft orbit the Russian and US models

would predict significantly different environmental exposure conditions. This makes comparison of flight test

results difficult and also complicates cooperation on future space missions as, pending resolution of these

differences, US and Russian designers would deduce different requirements for the same space vehicle. This is a

subject that warrants further investigation.

The most significant overlap in materials chemistry occurs for two types of white thermal control paint and for

acid anodized aluminum. Both countries utilize zinc oxide and zinc oxide orthotitanate pigments in metasilieate

binders. Russian experience broadens to the use of silicone and acrylic resins and asbestos paper while the US

relies more heavily on polyurethane.

Finagy, both the LDEF and RCC-1 results confirm that zinc oxide and zinc oxide orthotitane in mctasilicate

binders, (Z93, YB7], TP-co-2, TP-co-] ], TP-co-12) are the most stable upon exposure to the space environmenL
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This makes these materials leading candidates for use on future, international space ventures such as the Space

Station. The solar absorptance and emitlance values for these materials are very similar, indicating consistency of

results. Even the diffuse reflectance spectra for TP-co-2 and TP-co-12 are in general agreement with the US

equivalent Z93. The same is true for TP-co-11 and YB71.

In conclusion, the RCC-1 experiment confirms some of the more significant TCC findings made by the LDEF,

minimizing the potential for _s incompatibility on future flights. However, the analysis techniques point to

significant diffenmc_ in space environment model development, making this a key area for flffther st_ldy. While

these results presented here are significant for the LEO environment other orbits will require additional evaluation.

High inclination and geosynchronous orbits will have the added effects of charged particle radiation, and a possible

absence of AO. The synergism between the many effects of Earth orbits requires continued attention.
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